Геометрический подход к лагранжеву и гамильтонову формализмам электродинамики

Д. С. Кулябов

Аннотация


При решении полевых задач, в частности задач электродинамики, используются лагранжев и гамильтонов формализмы. Полевой гамильтонов формализм имеет то преимущество перед лагранжевым, что имманентно содержит калибровочное условие, в то время как в лагражевом формализме калибровочное условие вводится специально из некоторых внешних соображений. Однако использование гамильтонового формализма в полевых задачах затруднено из-за нерегулярности полевых лагранжианов. Необходимо использовать такой вариант лагранжевого и гамильтонового формализмов, который позволил бы работать с полевыми моделями, в частности решать задачи электродинамики. В качестве математического аппарата предлагается использовать современную дифференциальную геометрию и алгебраическую топологию, в частности теорию расслоенных пространств. Этот аппарат приводит к большей ясности в понимании математических структур, ассоциированных с физическими и техническими моделями. Использование теории расслоенных пространств позволяет углубить и расширить как лагранжев, так и гамильтонов формализмы, выявить широкий спектр вариантов данных формализмов, выбрать вариант формализма, наиболее адекватный изучаемой проблеме. Фактически, только использование формализма расслоенных пространств позволяет адекватно решать полевые задачи, в частности задачи электродинамики.

Ключевые слова


расслоенные пространства; связность; лагранжев формализм; гамильтонов формализм; теория Янга--Миллса

Полный текст:

PDF

Ссылки

  • На текущий момент ссылки отсутствуют.