Алгоритмы и программы решения краевых задач для систем ОДУ второго порядка с кусочно-постоянными потенциалами: многоканальная задача рассеяния и задача на собственные значения

А. А. Гусев, О. Чулуунбаатар, С. И. Виницкий, Л. Л. Хай, В. Л. Дербов, А. Гуждж

Аннотация


Предложены новые алгоритмы и программы, реализованные в системе Maple для решения многоканальной задачи рассеяния и задачи на собственные значения волноводного типа для систем ОДУ второго порядка с матрицей кусочно-постоянных коэффициентов размерностью $N\times N$ на оси. Разработаны новые алгоритм и программа для решения краевой задачи методом сшивки фундаментальных решений (МСФР) системы ОДУ в точках разрыва потенциалов. На каждом из подынтервалов оси общее решение системы ОДУ ищется в виде линейной комбинации $2N$ фундаментальные решений с неизвестными коэффициентами. Каждое фундаментальное решение явно зависит от спектрального параметра и собственных значений и собственных векторов алгебраических задач на собственные значения с матрицей постоянных потенциалов размерностью $N\times N$. Из условия непрерывности решений и их производных в точках разрывов потенциалов следует система алгебраических уравнений. В случае задачи на связанные или метастабильные состояния полученная система алгебраических уравнений содержит нелинейную зависимость от неизвестного спектрального параметра. Для решения такой нелинейной задачи сформулирован символьно-численный алгоритм. Дано сравнение эталонных расчётов связанных, метастабильных состояний и состояний рассеяния краевых задач для систем ОДУ второго порядка, выполненных с помощью программ, реализующих алгоритмы МСФР и метода конечных элементов.

Ключевые слова


многоканальная задача рассеяния; задача на собственные значения; система ОДУ второго порядка; методом сшивки фундаментальных решений

Полный текст:

PDF (English)

Ссылки

  • На текущий момент ссылки отсутствуют.