Аппроксимация решения краевых задач локально-кубическим сплайном

Т. Жанлав, Р. Мижиддорж

Аннотация


Построен явный локально-кубический сплайн для аппроксимации гладких функций и рассмотрены его аппроксимативные свойства. Предложена сплайн-схема для численного решения краевых задач, основанная на свойствах локально-кубического сплайна и обычного коллокационного кубического сплайна. Схема реализуется путём последовательного решения двух трёхдиагональных систем, отличающихся друг от друга лишь правой частью, что позволяет использовать метод трёхточечной прогонки. Это свидетельствует о том, что данный алгоритм является эффективным, количество операций линейно зависит от числа узлов сетки. Доказано, что построенный сплайн обладает такими же аппроксимативными свойствами, что и локально-кубический сплайн. Таким образом, в данной работе фактически рассматриваются вопросы аппроксимации решений краевых задач. Предложенная схема позволяет найти решение краевой задачи и его первую и вторую производные в узлах равномерной сетки с точностью четвёртого порядка по шагу сетки. Теоретические выводы подтверждены численными экспериментами. Благодаря хорошим аппроксимативным свойствам и простоте алгоритма реализации предложенный метод может быть применён для численного решения краевых задач для обыкновенных дифференциальных уравнений второго порядка, которые часто встречаются как в математике, физике, так и в области естественных и инженерных наук.

Ключевые слова


краевые задачи; кубический сплайн; повышенная точность

Полный текст:

PDF

Ссылки

  • На текущий момент ссылки отсутствуют.