Алгоритмы численного решения параметрической двумерной краевой задачи на собственные значения и вычисления производных от собственных решений по параметру и матричных элементов методом конечных элементов

А. А. Гусев

Аннотация


Представлены эффективные и стабильные алгоритмы численного решения с заданной точностью параметрической двумерной краевой задачи на собственные значения (КЗСЗ). КЗСЗ формулируется для самосопряженного эллиптического дифференциального уравнения в частных производных с краевыми условиями Неймана и/или Дирихле в конечной двумерной области. Исходная задача редуцируется к параметрической однородной одномерной КЗСЗ для системы обыкновенных дифференциальных уравнений второго порядка (ОДУ). Редукция производится разложением искомого решения по подходящему набору ортогональных собственных функций вспомогательной задачи Штурма--Лиувилля по одной из переменных. Производные по параметру от собственных значений и соответствующих собственных вектор-функций редуцированной задачи определяются как решения параметрической неоднородной одномерной КЗСЗ, полученной дифференцированием по параметру редуцированной задачи. Полученные КЗСЗ решаются методом конечных элементов с автоматическим выбором сдвига спектра. Алгоритм, реализованный на Фортране 77 в виде программы POTHEA, вычисляет с заданной точностью набор $\sim $ 50 собственных значений (потенциальных термов), собственных функций и их первых производных по параметру, а также матричных элементов -- интегралов от произведения собственных функций и/или первых производных собственных функций по параметру. Вычисленные потенциальные термы и матричные элементы можно использовать для формирования матрицы переменных коэффициентов системы ОДУ, которая возникает при редукции трёхмерной КЗСЗ в рамках многоканального адиабатического подхода или метода Канторовича. Эффективность и стабильность алгоритма продемонстрирована численным анализом собственных решений параметрической двумерной КЗСЗ и вычисленных матричных элементов которые применяются при решении с помощью программы KANTBP трёхмерной КЗСЗ для уравнения Шрёдингера для атома гелия с нулевым полным угловым моментом в гиперсферических координатах.

Ключевые слова


параметрическая двумерная задача на собственные значения; эллиптическое уравнение второго порядка; метод конечных элементов; метод Канторовича; гиперсферические координаты; атом гелия

Полный текст:

PDF (English)

Ссылки

  • На текущий момент ссылки отсутствуют.